Feng Yuehong

Text Box:

Personal profile

Name: Feng Yuehong

Gender: Male

Degrees: Ph.D.

Title: Associate Professor

E-mail: fyh@bjut.edu.cn

Current Professional Societies: Member of CSIAM

Research Areas: Applied Mathematics

Honors:

[1]Postgraduate Teaching Supervision Expert;

[2]Student International Development Young Mentor of Beijing University of Technology

Publications:

[1] S. Wang,Y.H. Feng, X. Li, The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasmas, SIAM. J. Math. Anal. (5) 44 (2012) 3429-3457.

[2]Y.H. Feng, S. Wang, S. Kawashima, Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system, Math. Models Methods Appl. Sci. 24(2014),2851-2884.WOS:000344008300004

[3]Y.H. Feng, Y.J. Peng, S. Wang, Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World. 19 (2014) 105-116.WOS:000337213000010

[4] S. Wang,Y.H. Feng*, X. Li. The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas, Appl. Math. Comput. (1) 231 (2014) 299-306.WOS:000332525000028

[5]Y.H. Feng, S. Wang, X. Li. Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas, Acta Math. Sci. Ser. B. (5) 35B (2015) 955-969.WOS:000361860700001

[6]Y.H. Feng, Y.J. Peng, S. Wang, Stability of non-constant equilibrium solutions for two-fluid Euler-Maxwell systems, Nonlinear Anal. Real World. 26 (2015) 372-390.WOS:000360952300023

[7] S. Wang,Y.H. Feng, X. Li, Existence of global smooth solutions to the Cauchy problem of bipolar Navier-Stokes-Maxwell system, Advanced Studies in Pure Mathematics,Nonlinear Dynamics in Partial Differential Equations 64 (2015) 347-355.WOS:000358751100032

[8]Y.H. Feng, S. Wang, X. Li. Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term, Math. Methods Appl. Sci. 39 (2016) 2514-2528.WOS:000378726800007

[9] X. Li, S. Wang,Y.H. Feng*. Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms, Z. Angew. Math. Phys. 67(5) (2016) 27 pp.WOS:000385866200025

[10]Y.H. Feng, S. Wang, Stability of non-constant steady state solutions for non-isentropic Euler-Poisson system in semiconductors (Chinese). Sci Sin Math, 2016, 46: 1675-1690.

[11]Y.H. Feng, X. Li, S. Wang. Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems arising in plasmas. J. Math. Phys. 59 (2018), 20 pp.WOS:000440588200047

[12]Y.H. Feng, C.M. Liu, Stability of steady-state solutions to Navier-Stokes-Poisson systems. J. Math. Anal. Appl.462(2) (2018), 1679-1694. WOS: 000428230000033

[13] X. Li, S. Wang,Y.H. Feng*. Stability of nonconstant steady-state solutions for 2-fluid nonisentropic Euler-Poisson equations in semiconductor. Math. Methods Appl. Sci. 41(10) (2018) 3588-3604. WOS :000435801200006

[14] X. Li, S. Wang,Y.H. Feng*. Stability of non-constant equilibrium solutions for bipolar full compressible Navier-Stokes-Maxwell systems. J. Nonlinear Sci. 28(6) (2018) 2187-2215.

WOS :000448054700006

[15]Y.H. Feng*, X. Li, S. Wang. Global zero-relaxation limit of the non-isentropic Euler-Poisson system for ion dynamics. Asymptotic Analysis. (2019), 18pp.DOI 10.3233/ASY-191589

[16]Y.H. Feng*, X. Li, S. Wang. Stability of Non-constant Equilibrium Solutions for Compressible Viscous and Diffusive MHD Equations with the Coulomb Force. Journal of Dynamics and Differential Equations. (2020), 37pp.DOI10.1007/s10884-020-09844-5

Personal Statement

Yue-Hong FENG, Associate Professor and Master Student Supervisor, is the member of Applied Mathematical Team of Beijing University of Technology. He has been engaged in teaching for 10 years. He has presided over one Beijing Natural Science Foundation project and published more than ten SCI papers on international major journals, one academic book. The citation times have exceeded 80 times.