Wang Ruzhi

Name: Wang Ruzhi

Gender: Male

Degrees: Ph.D

Title: Professor

E-mail : wrz@bjut.edu.cn


Current Professional Societies

  1. Member of Computational Materials Committee of China Society of materials research

Research Areas

  1. Nano-semiconductor functional materials and devices

  2. Computational materials and physics

  3. Hydrogen energy materials and applications

Honors

  1. Beijing Nova Talents,2008;

  2. Beijing Youth top Talents, 2012;

  3. BJUT Jing-Hua Talents, 2013

Publications

  1. G. Zu, G. Guo, H. Liet al.,Revealing the failure mechanism of transition-metal chalcogenides towards the copper current collector in secondary batteries,J. Mater. Chem. A8, 6569 (2020).

  2. C. Wang, L. Gao, R. Wanget al.,Phase stability and temperature effect in ScX (X=S, Se and Te) compounds,Phys. Lett. A384, 126373 (2020).

  3. B.-R. Wang, R.-Z. Wang, B.-M. Minget al.,Surface state effect on gas sensitivity in nano-hierarchical tin oxide,Ceram. Int.46, 26871 (2020).

  4. B.-R. Wang, R.-Z. Wang, L.-Y. Liuet al.,WO3 Nanosheet/W18O49 Nanowire Composites for NO2 Sensing,Acs Applied Nano Materials3, 5473 (2020).

  5. H. Su, G. C. Guo, Y. Renet al.,Local spring effect in titanium-based layered oxides,Energy Environ. Sci.13, 4371 (2020).

  6. Q. Liang, R.-Z. Wang, M.-Q. Yanget al.,A green, low-cost method to prepare GaN films by plasma enhanced chemical vapor deposition,Thin Solid Films710, 138266 (2020).

  7. Y.-H. Ji, R.-Z. Wang, M.-Q. Yanget al.,Structural Modulation of GaN Nanowires Grown in High-Density Plasma Environment,Journal of Physical Chemistry C124, 6725 (2020).

  8. Y.-H. Ji, A.-P. Huang, M.-Q. Yanget al.,Wrinkled-Surface-Induced Memristive Behavior of MoS(2)Wrapped GaN Nanowires,Advanced Electronic Materials, 2000571 (2020).

  9. Y.-H. Ji, A.-P. Huang, Q. Gaoet al.,Photoluminescence Properties of GaN Nanowires Grown in a Gradient-Plasma Environment,Journal of Physical Chemistry C124, 16002 (2020).

  10. G. Guo, R. Wang, S. Luoet al.,Metallic two-dimensional C3N allotropes with electron and ion channels for high-performance Li-ion battery anode materials,Appl. Surf. Sci.518, 146254 (2020).

  11. G. Guo, C. Wang, S. Luoet al.,First-principles study of C3N nanoribbons as anode materials for Li-ion batteries,Phys. Lett. A384, 126741 (2020).

  12. M.-C. Zhang, G.-C. Guo, R.-Z. Wanget al.,Coupling enhanced growth by nitrogen and hydrogen plasma of carbon nanotubes,Crystengcomm21, 4653 (2019).

  13. B. Ming, Z. Zheng, C. Wanget al.,Enhancement mechanism of H-2 sensing in metal-functionalized GaN nanowires,Appl. Surf. Sci.486, 212 (2019).

  14. J. Meng, B. Ming, X. Zhanget al.,Controlled Growth of Unidirectionally Aligned Hexagonal Boron Nitride Domains on Single Crystal Ni (111)MgO Thin Films,Crystal Growth & Design19, 453 (2019).

  15. G.-C. Guo, R.-Z. Wang, B.-M. Minget al.,C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries,J. Mater. Chem. A7, 2106 (2019).

  16. G.-C. Guo, R.-Z. Wang, B.-M. Minget al.,Trap effects on vacancy defect of C3N as anode material in Li-ion battery,Appl. Surf. Sci.475, 102 (2019).

  17. X.-Y. Feng, R.-Z. Wang, Q. Lianget al.,Direct Growth of GaN Nanowires by Ga and N-2 without Catalysis,Crystal Growth & Design19, 2687 (2019).

  18. H. Yu, Y.-G. So, Y. Renet al.,Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries,Journal of the American Chemical Society140, 15279 (2018).

  19. D. Wang, X. Zhang, G. Guoet al.,Large-Area Synthesis of Layered HfS2(1-x)Se2x Alloys with Fully Tunable Chemical Compositions and Bandgaps,Advanced Materials30, 1803285 (2018).

  20. D. Wang, J. Meng, X. Zhanget al.,Selective Direct Growth of Atomic Layered HfS2 on Hexagonal Boron Nitride for High Performance Photodetectors,Chemistry of Materials30, 3819 (2018).

  21. R. Li, L. Liu, B. Minget al.,Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets,Appl. Surf. Sci.439, 983 (2018).

  22. C. Lai, J. Wang, F. Zhouet al.,Preparation and surface characteristics of Re3W matrix scandate cathode: An experimental and theoretical study,Appl. Surf. Sci.440, 763 (2018).

  23. J.-X. Kang, D.-F. Zhang, G.-C. Guoet al.,Au Catalyzed Carbon Diffusion in Ni: A Case of Lattice Compatibility Stabilized Metastable Intermediates,Advanced Functional Materials28, 1706434 (2018).

  24. R.-Z. Wang, W. Zhao, and H. Yan,Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes,Sci Rep7, 43625, 43625 (2017).

  25. Y.-N. Li, R.-Z. Wang, C.-H. Suet al.,Ultra-low threshold field emission from amorphous BN nanofilms,J. Alloy. Compd.705, 734 (2017).

  26. Y. Li, Z. Liu, X. Chenget al.,Assembled graphene nanotubes decorated by hierarchical MoS 2 structures: Enhanced lithium storage and in situ TEM lithiation study,Energy Storage Materials9, 188 (2017).

  27. Y.-H. Ji, R.-Z. Wang, X.-Y. Fenget al.,Modulation Effects of Hydrogen on Structure and Photoluminescence of GaN Nanowires Prepared by Plasma-Enhanced Chemical Vapor Deposition,J. Phys. Chem. C121, 24804 (2017).

  28. Y. Yang, Q. Wu, Y. Cuiet al.,Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations,Acs Applied Materials & Interfaces8, 25229 (2016).

  29. Z. Liu, X. Zhong, H. Yanet al.,Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates,Phys. Chem. Chem. Phys.18, 974 (2016).

  30. Z. Liu, R.-Z. Wang, and P. Zapol,An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations,Phys. Chem. Chem. Phys.18, 29239 (2016).

  31. L.-C. Xu, X.-J. Song, R.-Z. Wanget al.,Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device,Appl. Phys. Lett.107, 021905 (2015).

  32. Z. Liu, R.-Z. Wang, L.-M. Liuet al.,Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride,Phys. Chem. Chem. Phys.17, 11692 (2015).

  33. Y.-F. Z. Jun-Wei Zhao, Yong-He Li, Chao-hua Su, Xue-Mei Song, Hui Yan , Ru-Zhi Wang,A low cost, green method to synthesize GaN nanowires,Sci Rep, In press (2015).

  34. Y. Zhang, R.-Z. Wang, S.-G. Xiaoet al.,Efficient ultraviolet and near-infrared conversion amorphous YbF3:Er film,Journal of Luminescence145, 351 (2014).

  35. L.-C. Xu, R.-Z. Wang, M.-S. Miaoet al.,Two dimensional Dirac carbon allotropes from graphene,Nanoscale6, 1113 (2014).

  36. Z. Liu, R.-Z. Wang, L.-M. Liuet al.,Si doping at GaN inversion domain boundaries: an interfacial polar field for electron and hole separation,J. Mater. Chem. A2, 9744 (2014).

  37. K.-Y. Li, L.-Y. Liu, R.-Z. Wanget al.,Broadband sensitization of downconversion phosphor YPO4 by optimizing TiO2 substitution in host lattice co-doped with Pr3+-Yb3+ ion-couple,J. Appl. Phys.115, 123103 (2014).

  38. C.-C. Chen, R.-Z. Wang, P. Liuet al.,Structural effects of field emission from GaN nanofilms on SiC substrates,J. Appl. Phys.115, 153705 (2014).

  39. W. Zhao, R.-Z. Wang, Z.-W. Songet al.,Crystallization Effects of Nanocrystalline GaN Films on Field Emission,Journal of Physical Chemistry C117, 1518 (2013).

  40. W.-J. Yin, Y.-E. Xie, L.-M. Liuet al.,R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons,J. Mater. Chem. A1, 5341 (2013).

  41. G. Xie, K. Zhang, H. Fanget al.,A Photoelectrochemical Investigation on the Synergetic Effect between CdS and Reduced Graphene Oxide for Solar-Energy Conversion,Chemistry-an Asian Journal8, 2395 (2013).

  42. Y.-Q. Wang, R.-Z. Wang, Y.-J. Liet al.,From powder to nanowire: a simple and environmentally friendly strategy for optical and electrical GaN nanowire films,Crystengcomm15, 1626 (2013).

  43. Y. Q. Wang, R. Z. Wang, M. K. Zhuet al.,Structure and surface effect of field emission from gallium nitride nanowires,Appl. Surf. Sci.285, 115 (2013).

  44. X.-l. Huang, R.-z. Wang, D. Xuet al.,Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries,Advanced Functional Materials23, 4345 (2013).

  45. L.-C. Xu, R.-Z. Wang, and H. Yan,Order Structures of AlxGa1-xN Alloys: First-Principles Predictions,Journal of Physical Chemistry C116, 1282 (2012).

  46. L.-C. Xu, R.-Z. Wang, L.-M. Liuet al.,Wurtzite-type CuInSe2 for high-performance solar cell absorber: ab initio exploration of the new phase structure,J. Mater. Chem.22, 21662 (2012).

  47. Z.-W. Song, R.-Z. Wang, W. Zhaoet al.,Enhanced Field Emission from GaN and AIN Mixed-Phase Nanostructured Film,Journal of Physical Chemistry C116, 1780 (2012).

  48. M.-H. Qu, R.-Z. Wang, Y. Zhanget al.,High efficient antireflective down-conversion Y2O3:Bi,Yb films with pyramid preferred oriented nano-structure,J. Appl. Phys.111, 093108 (2012).

  49. M. Qu, R. Wang, Y. Chenet al.,Broadband near infrared quantum cutting in Bi-Yb codoped Y2O3 transparent films on crystalline silicon,Journal of Luminescence132, 1285 (2012).

  50. Q. H. Huo, R. Z. Wang, and H. Yan,Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices,Appl. Phys. Lett.101, 152404 (2012).

  51. W. Zhao, R.-Z. Wang, X.-M. Songet al.,Electron field emission enhanced by geometric and quantum effects from nanostructured AlGaN/GaN quantum wells,Appl. Phys. Lett.98, 152110 (2011).

  52. L.-C. Xu, R.-Z. Wang, X. Yanget al.,Thermal expansions in wurtzite AlN, GaN, and InN: First-principle phonon calculations,J. Appl. Phys.110, 043528 (2011).

  53. X.-L. Wei, H. Fang, R.-Z. Wanget al.,Energy gaps in nitrogen delta-doping graphene: A first-principles study,Appl. Phys. Lett.99, 012107 (2011).

  54. H. Fang, R.-Z. Wang, M. Yanet al.,Strain-induced metal to semiconductor transition in ultra-small diameter single-wall carbon nanotubes,Phys. Lett. A375, 1200 (2011).

  55. H. Fang, R.-Z. Wang, and H. Yan,Work function modulation of AuCl4- molecule adsorbed on graphene: A first-principles simulation,Chemical Physics Letters516, 88 (2011).

  56. H. Fang, R.-Z. Wang, S.-Y. Chenet al.,Strain-induced negative differential resistance in armchair-edge graphene nanoribbons,Appl. Phys. Lett.98, 082108 (2011).

  57. W. Zhao, R.-Z. Wang, X.-M. Songet al.,Ultralow-threshold field emission from oriented nanostructured GaN films on Si substrate,Appl. Phys. Lett.96, 092101 (2010).

  58. W. Zhao, R.-Z. Wang, S. Hanet al.,Field Emission Enhancement in Semiconductor Nanofilms by Engineering the Layer Thickness: First-Principles Calculations,Journal of Physical Chemistry C114, 11584 (2010).

  59. R. Y. Yuan, R. Z. Wang, and H. Yan,Tunable resonant tunneling through a system of capacitively coupled double quantum dots,Physica E-Low-Dimensional Systems & Nanostructures41, 558 (2009).

  60. J. B. You, X. W. Zhang, P. F. Caiet al.,Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment,Appl. Phys. Lett.94, 262105 (2009).

  61. R.-Z. Wang, M. Kohyama, S. Tanakaet al.,First-Principles Study of the Stability and Interfacial Bonding of Tilt and Twist Grain Boundaries in Al and Cu,Materials Transactions50, 11 (2009).

  62. W. Yang, R.-Z. Wang, and H. Yan,Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations,Phys. Rev. B77, 195440 (2008).

  63. W. Yang, R.-Z. Wang, Y.-F. Wanget al.,Are deformed modes still Raman active for single-wall carbon nanotubes?,Physica B403, 3009 (2008).

  64. R. Z. Wang, H. Yan, B. Wanget al.,Field emission enhancement by the quantum structure in an ultrathin multilayer planar cold cathode,Appl. Phys. Lett.92, 142102 (2008).

  65. R. Y. Yuan, R. Z. Wang, and H. Yan,Spin-polarized transport in a coupled-double-quantum-dot system with ferromagnetic electrodes,J. Phys.-Condes. Matter19, 376215 (2007).

  66. R. Y. Yuan, R. Z. Wang, J. S. Weiet al.,Spin transport through QD with spin-orbital interaction and magnetic field,Physica B392, 233 (2007).

  67. R. Y. Yuan, R. Z. Wang, Z. Q. Duanet al.,Mesoscopic Fano effect modulated by Rashba spin-orbit coupling and external magnetic field,Phys. Lett. A365, 248 (2007).

  68. W. Yang, R.-Z. Wang, Y.-F. Wanget al.,Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes,Phys. Rev. B76, 033402 (2007).

  69. W. Yang, R. Z. Wang, X. M. Songet al.,Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes,Phys. Rev. B75, 045425 (2007).

  70. K. Xue, H. P. Ho, J. B. Xuet al.,Electron interferometry in the proximity of amorphous ultrathin SiO2/Si,Appl. Phys. Lett.90, 182108 (2007).

  71. Z.-Q. Duan, R.-Z. Wang, R.-Y. Yuanet al.,Field emission mechanism from a single-layer ultra-thin semiconductor film cathode,J. Phys. D-Appl. Phys.40, 5828 (2007).

  72. R. Y. Yuan, R. Z. Wang, K. Xueet al.,Spin transport in an asymmetrical magnetic superlattice,Phys. Rev. B74, 024417 (2006).

  73. J. S. Wei, R. Z. Wang, R. Y. Yuanet al.,Tunable spin transport in magnetic-electric superlattice,Phys. Lett. A358, 470 (2006).

  74. R. Z. Wang, H. Zhou, X. M. Songet al.,Effects of phase formation on electron field emission from BN films,J. Cryst. Growth291, 18 (2006).

  75. J. S. Wei, R. Z. Wang, R. Yuanet al.,Spin transport in quantum dot embedded in Aharonov-Bohm ring,Phys. Lett. A345, 211 (2005).

  76. R. Z. Wang, X. M. Ding, B. Wanget al.,Structural enhancement mechanism of field emission from multilayer semiconductor films,Phys. Rev. B72, 125310 (2005).

  77. Y. P. Chen, R. Z. Wang, B. Wanget al.,Effects of mean free path on the preferentially orientated growth of AlN thin films,J. Cryst. Growth283, 315 (2005).

  78. X. D. Yang, R. Z. Wang, Y. Guoet al.,Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field,Phys. Rev. B70, 115303 (2004).

  79. R. Z. Wang, X. M. Ding, K. Xueet al.,Multipeak characteristics of field emission energy distribution from semiconductors,Phys. Rev. B70, 195305 (2004).

  80. R. Z. Wang, B. Wang, H. Wanget al.,Band bending mechanism for field emission in wide-band gap semiconductors,Appl. Phys. Lett.81, 2782 (2002).

Personal Statement

Wang Ruzhi, professor and doctoral supervisor, in Faculty of Materials and Manufacturing of Beijing University of Technology. He was authored/co-authored more than 150 papers in international refereed journals (SCI indexed) and his innovations have led to more than 22 Chinese patents. As the project PI, he has obtainedmore than 10 research funds, such as, National Natural Science Foundation of China, Beijing Natural Science Foundation, and Beijing Nova Program et al. His research activities are mainly focused on:

1) To develop fundamental understandings, rational predications and designs of exotic phenomena and properties at surfaces/interfaces offunctional materialswith low-dimensionality, such as carbonaceous 1D/2D materials and III-nitride semiconductor materials, including heterostructured ultrathin films, superlattices and nanowires, for opotelectronic andvacuum nanoelectronicapplications.

2) To predict, design and prepare smart sensing materials, hydrogen fuel cell catalysts,and other nano-semiconductor functional materials for next generation energy and environmental applications.

3)Computational predicationsofelectronic/band structures, carrier transports and optical properties by molecular dynamics, first principle andab-initocalculations, non-equilibrium Green Functional and latticepredictive analytic methods.